THEORY OF ROTATIONAL RELAXATION
IN A DIATOMIC GAS
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The three-dimensional problem of energy exchange between translational and rotational
degrees of freedom in collisions of diatomic molecules with structureless particles is
solved numerically within classical mechanics. The intermolecular interaction potentials
were taken as exponential repulsions between the molecular atoms and the incident par-
ticles, while well-known experimental information [1] was used for the potential param-
eters. The results obtained were used for numerical Monte Carlo evaluation of the colli-
sion integral, determining the rotational relaxation time. Molecular nitrogen is chosen as
an example, The results of calculation are in quite satisfactory agreement with experimen-
tal data.

1. The process of establishing equilibrium between translational and rotational degrees of freedom
of a diatomic gas is usually based on the expression for the rotational relaxation time Tyq¢, obtained by
means of the formal kinetic theory [2]. The classical form of the relaxation time is

(pret)~t = 2kcros (nmkT)~12Q—22n jl (Are)? ¥° 03D (— y* — &; —&;) b db dy dQ,dQ;, (1.1)
Q =fexp(—e)dQ;, & =EykT, y*= (m/4kT)g?,

where p is the pressure, k is the Boltzmann constant, cpot is the molecular specific heat of the rotational
degree of freedom, m is the molecular mass, T is the gas temperature, Ag,,¢ is the energy change of the
rotational degrees of freedom of two molecules as a result of colliding, E; is the infernal energy of the
i-th molecule until collisions, b is the impact parameter, d@; is the phase volume element of internal de-
grees of freedom of the i-th molecule until collisions, and g is the relative velocity of molecules until col-
lisions.

In classieal treatments of the collision process assignment of the initial state of two colliding mole-
cules determines uniquely their final state, while the dependence of the final state on the initial one can be
found by numerical solution of the dynamic collision problem with given intra- and intermolecular inter—
action potentials. Consequently, the quantity Aeyyt is a function of b, vy, €4, @ in the given case.

We make a number of assumptions, allowing us to decrease the dimension of the integral in the
right-hand side of (1.1). We write (Agpgp)? in the form

(Ae'ro!)2 = (AE,; yot -+ Aej"rat)2 = (Agi;rni)2 + (Asj.;rot)z + 2A€i‘ro!A8jrrot- (1-2)

Since positive and negative changes in the rotational energy of colliding molecules are possible, it
is natural to expect that the average of the last term in the right-hand side of (1.2) is much smaller than
the average of the first two terms and can be neglected with respect to them. Neglecting also the effect
of internal states of the j~th molecule on the collision trajectory and on the change in rotational energy of
the i-th molecule, Eq. (1.1) can be rewritten as

(PTrod)~t = 2kcrss (unkT)=12Q-125 [ 2(A€; 10 ¥° €xp (— Vv2 —2;) bdb dy dQ;.
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Thus, the assumption made allows us to reduce the dynamic collision prob-
lem of two molecules to the collision problem of a molecule with a structureless
particle. At the same time Agj rot is a function of b, v, Q. It should be pointed
out, however, that this transition should not be considered as formally replacing
one of the molecules by a structureless particle.

2. To determine the dependence of Agj rot on b, v, & it is necessary to
solve the dynamic collision problem of a molecule, whose atoms are denoted by
indices 1 and 2, with a structureless particle (index 3). We assume that the inter-
action potential of the colliding particles is given in the form

U=Uy, (ll'l—r2l)‘:“Uja(ll'l'—r3l)+U23(!f2*‘rsl)y

where rgla=1,2,3) is the radius-vector of particle @ in a fixed Cartesian coordinate system. The system
of particles considered has 9 coordinates and 9 momenta. Consequently, to solve the dynamic problem it
is necessary to integrate 18 Hamilton equations,

dry/dt = pyma ', dpudt = — AU[dr,, o =1,2,3, (2.1)
The number of these equations can be reduced from 18 to 12 by using integrals of motion of the cen-

ter of mass of the system (it is assumed that no external forces act on the system). For this it is neces-
sary to introduce new variables

_ ¥ - e -
R= 2mero MY, r=r13—(mr; +myr)m=1, r;=r —r,
o

P= ,2:} Pas P = [mpy—ms(py —P)] M1, p; = (mypy — mypy) m—1,

m=my+my, M=m-+m,
Here (R, P) are the phase coordinates of the center of mass of the system of colliding particles, (r, p) are
the phase coordinates of the relative motion of molecule 12 and particle 3, and (r;, p;) are the phase co-

ordinates of internal motion in the molecule. In the new variables the equations of motion (2.1) are re-
written in the form

dR/dt = PM-1, dPjdt =0, (2.2)
drjdt = pu~t, dp/dt = —aU/dr, (2.3)
dr;/dt = ppi', dpy/dt = — U /or,,
p = mmM~1, p; =mmm-1
Equations (2.2) describe translational motion of the center of mass of the system as a whole, and
thus, they are of no interest. Equations (2.3) describe the relative motion of particle 3 and molecule 12

and the internal motion in molecule 12. They can be considered as equations of motion of two particles
with masses p and p; in a field with interaction potential

U(r, 1:)="Uny(rsp)-+Uss(rss)+ U2a(res),
Typ=Ti, Tjy=F—mam~1r;, Ty=rF+mmir;.
If the interaction potential U(r, rj) is known and the initial values of coordinates and momenta of

particles p and pj are given, numerical integration of Egs. (2.3) solves the dynamic collision problem.
At the same time the dependence of Agj rot on b, v, 2 is found.

The number of equations can be still reduced, using the fact that the total energy and angular mo-
mentum of the system are conserved. It is, however, more convenient not to reduce the order of the sys~
tem but to use these integrals for automatic modification of the step of integration.

3. We rewrite (1.3) in a form convenient for calculations. The phase volume element of internal
degrees of freedom is represented in the form
dQ; = rip;sin6, sin 0,d0,d0,d¢,do,drdp;,
where angles with index r refer to rj and those with p, to p;. Then
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> (Ag; ror)?E BXD (—e——ai)br% P sin®, sin6,d 0,40, d¢,dg,drdp,dbde,
g = [pi2i + U (r)]/AT,  Prmax = (D)2,
&1 rot = B, — Divin 20KT,  Phew = (PX)/rs &= v>

Here D is the dissociation energy of the molecule, and ry,;, and ryy .5 are the solutions of the equation
p/ 2, + Upy(r) =D for given p;. _

The ealculation of the eight-dimensional integral in the right-hand side of (3.1) by conventional meth-
ods is practically inconvenient, since the number of points in which the integrand has to be evaluated in-
creases sharply with the integral dimension. The Monte Carlo method significantly reduces the number of
integrand estimates required. Practically, the error of the Monte Carlo scheme does not depend explicitly
on the dimensionality of the integral and decreases as N-t/ %, where N is the number of integrand evalua-
tions. Itis, therefore, of practical interest to apply the Monte Carlo method to the calculation of the in-
tegral (3.1), as described in what follows. .

It is required to evaluate the integral I = |... [ f @y, ... 2,) day ... dz, over the volume V lying inside the
v

n-dimensional cube 0 =xy, ..., X, =1. We continue flx;, ..., xp) to the whole cube, putting it equal to zero
outside V. Consider the set of independent random points Py(&yy, ..., £nk), Whose coordinates are inde-
pendent random quantities, equally distributed on the segment (0, 1). For large N the following relation
then holds with high probability:

N
I~y = N—igif (Py).

The inequality [1—1/ INI < ¢ is satisfied with probability q, and the quantity ¢ is estimated by the equation [3]

e~ + 4 (2/N)1/21u2m1 N'N-12, (6.2
N

= N-1Y 2 (Py)—Ti.,
k=1

The quantity T appearing in (3.2) is determined from the given probability q by the equation erf(r/
21/?) =q [erf(x) is the error function].

4. The scheme discussed abqve was used to evaluate the rotational relaxation time of molecular
nitrogen. The intramolecular potential was given by the anharmonic Morse oscillator

Up=D{1 —exp[—p (r—rylI}*,

where T, is the equilibrium distance between atoms in the molecule, and B is a parameter determined by
well-known spectroscopic constants (for N,: D=9.75 eV, 3=2.72 AL Ty =1.094 A). For the intermolecu-
lar potential we took the potential ‘

U5+ U= Alexpl—~hry)+expl—hraa)l, - {4.1)

where the parameters A and A were determined by averaging over all molecular orientations the interac-
tion potential U=Ae-AT, taken from elastic scattering experiments of molecular beams [1], using the sim-
plified procedure considered in [4]. As a result we have for N,: A=725 eV, A=3.27 AL

The equations of motion (2.3) were solved numerically on a BESM-6 computer by means of the
Runge—Kutta method. Inclusion of every trajectory started at a distance x;=5r; (Fig. 1). For given ini-
tial collision parameters a standard subroutine of pseudorandom numbers, equally distributed over the
interval (0, 1), was used.

Calculation of the rotational relaxation time was performed at temperatures of 300, 1000, and 1500°K.
The results of the calculation, expressed in terms of the number of collisions needed to establish rotational
equilibrium, are

Zrat = 4ﬂ_1PTrom'—i,
where 1 is the gas viscosity, represented in Fig. 2 (the continuous line). The circles are results of ultra-
sonic measurements of Z.ot [5].

On the whole, we point out the quite satisfactory agreement of the given calculation, using experi-~
mental values for the intermolecular interaction potential parameters, with direct measurements of Zypot.
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Deviations between experimental and calculated values at
T £1000°K can be explained as follows.

The relaxation time calculated by (1.1) character-
izes the rotational relaxation time only for small deviations
from rotational—translational equilibrium. In ultrasonic
experiments the deviation from equilibrium, particularly
at low temperatures (around 300°K), can be significant.

N Therefore, quantitative comparison of calculated and ex-
%% 2% 600 1900 perimental values of Z,ot is, in our case, not fully correct.
. Nevertheless, the qualitative pattern of the calculation of
Fig. 4 - . . L . .
Z ot (T) (Z ot increasing with T) coincides with experiment,
which justifies the confidence in using the potential model
(4.1) in evaluating the rotational relaxation time.

S
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P Trot 105 g/cm-sec

In this connection it is interesting to compare the given calculation with the theory of rotational re~
laxation [6], in which the temperature dependence of Zyqt is manifested only by the presence of a potential
well inh the intermolecular interaction potential. For comparison, we analyze the theoretical and calculated
function Z,q¢ (A). Parker's expression for Z ot in the given case is

Zyor = 2748215 (8) 15 (8), 8 = 0.5Mr,, (4.2)

where I,,(6) is the modified, n-th order Bessel function. Figure 3 shows the result of varying the param-
eter ) in the expression for Zpot- A calculation by Eq. (4.2) is shown by the dashed line, and the full curve
gives the computer calculation at T=300°K, A=700 eV. Analysis of Fig. 3 shows that the functions Zrot (A)
are totally different. The reason for this deviation should be sought in Parker's basic assumptions: at
large A the assumption of a small deviation of the interaction potential from spherical symmetry breaks
down, and for small A the assumption of smallness of Ag, o fails.

The usefulness of Parker's theory is in predicting the increase of Zpot with T. This fact, however,
is a direct consequence of the presence of potential wells in the intermolecular potential. A calculation
for the potential (4.1) gives Zpqt (T) = const (4.2), which does not correspond to the results obtained in the
present paper. Parker's theory also does not predict the dependence of Zypot on A. The data of our paper,
evaluated for T=300°K and 2 =3.27 A™!, show that Z.;4=8.2 at A=725 eV and Zyot=13.7 at A=214 eV.

We discuss the problem of accuracy of the calculation. The accuracy is controlled by Eq. (3.2). To-
gether with the collision integral we evaluated the quantity ¢%, needed to estimate the relative error g. It
turns out that the integrand has to be evaluated 3000~5000 times in order that the error be less than 10%
_with a probability 0.87. The probability that the error is less than 20% for N =500(1000) is 0.66(0.82).

Figure 4 shows the typical dependence of pT, .t on N (in the case given T =1000°K). Analysis of Fig.
4 shows that after N=250 the points lie mainly between 3.0 and 3.8. Therefore, as a final result we chose
not the unknown value of the quantity considered at N=1000, but its average value in the interval N =250~
1000, equal to 3.4. It can be expected that this procedure gives a more accurate result, but the accuracy
estimates above are mostly applicable to points on the boundary of the spread region.

- Since a calculation of 1000 trajectories on the BESM-6 computer requires nearly 3 hours, most re-
sults were obtained by averaging the data after 500 trajectories.
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