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The th reekd imens iona l  p rob lem of ene rgy  exchange between t rans la t iona l  and rota t ional  
deg rees  of f r e edom  in coll isions of d ia tomic  molecu les  with s t r u c t u r e l e s s  p a r t i c l e s  is  
solved numer i ca l ly  within c lass ica l  mechan ics .  The i n t e r m o l e c u l a r  in te rac t ion  potent ia ls  
we re  taken as exponential  repuls ions  between the m o l e c u l a r  a toms  and the incident p a r -  
t i c les ,  while well-known exper imenta l  in format ion  [1] was used  for  the potent ial  p a r a m -  
e t e r s .  The resu l t s  obtained were  used for  numer ica l  Monte Car lo  evaluation of the col l i -  
sion in tegra l ,  de te rmin ing  the rota t ional  re laxat ion t ime .  Molecu la r  ni t rogen is  chosen as  
an example  :. The r e su l t s  of calculat ion a r e  in quite s a t i s f ac to ry  a g r e e m e n t  with e x p e r i m e n -  
tal  data.  

1. The p r o c e s s  of es tab l i sh ing  equi l ibr ium between t rans la t iona l  and rota t ional  degrees  of f r eedom 
of a d ia tomic  gas  is  usual ly  based on the exp re s s ion  for  the rota t ional  re laxa t ion  t ime  Trot, obtained by 
means  of the f o r m a l  kinetic theory  [2]. The c lass ica l  fo rm of the re laxa t ion  t ime  is  

(pT,:~) -I  ~ 2 k c ~  (nmkT)-l/2Q-'-2~ S (he~0~) ~ y3 exp ( - -  l, ~ - -  e~ - -  ej) b db dy d~id~i ,  (I.i) 

Q = S exp (--  e~) d.Qi, e~ = Ei/kT,  3f = (m/4kT) g2, 

where  p is  the p r e s s u r e ,  k is  the Bol tzmann constant,  Cro t i s  the m o l e c u l a r  speci f ic  heat  of the rotat ional  
degree  of f r eedom,  m is  the m o l e c u l a r  m a s s ,  T is  the gas  t e m p e r a t u r e ,  Aero  t is  the ene rgy  change of the 
rotat ional  degrees  of f r e e d o m  of two molecu les  as  a r e su l t  of colliding, E i i s  the in ternal  ene rgy  of the 
i - th  molecu le  until coll is ions,  b is  the impac t  p a r a m e t e r ,  d~2 i is  the phase  volume e lement  of in ternal  de-  
g rees  of  f r e e d o m  of the i - t h  molecule  until col l is ions,  and g is  the re la t ive  veloci ty  of molecu les  until col-  
li sions. 

In c lass ica l  t r e a t m e n t s  of the col l is ion p r o c e s s  a s s ignment  of the init ial  s ta te  of two colliding m o l e -  
cules de t e rmines  uniquely the i r  f inal  s tate,  while the dependence of the f inal  s ta te  on the ini t ial  one can be 
found by numer ica l  solution of the dynamic  col l is ion p r o b l e m  with given i n t r a -  and i n t e r m o l e c u l a r  i n t e r -  
action potenl ials .  Consequently,  the quantity Agro  t i s  a function of b, y,  ~2i, ~2] in the given ease .  

We make  a num ber  of a s sumpt ions ,  allowing us to dec r ea se  the d imension of the in tegra l  in the 
r ight -hand side of (1.1). We wri te  (Aerot)~ in the f o r m  

(AStor) 2=  (hei rot + AeLrot) ~ = (Aei:rot) ~ + (AB/~ot) 2 + 2Aei ~otAejr~ot. (1.2) 

Since posi t ive  and negat ive changes in the ro ta t iona l  ene rgy  of colliding molecu les  a r e  poss ib le ,  i t  
is na tura l  to expect  that  the ave r age  of the l a s t  t e r m  in the r igh t -hand  side of (1.2) is  much  s m a l l e r  than 
the ave r age  of the f i r s t  two t e r m s  and can be neglected with r e s p e c t  to them.  Neglect ing a lso  the effect  
of in terna l  s ta tes  of the ] - th  molecule  on the coll is ion t r a j e c t o r y  and on the change in ro ta t ional  energy  of 
the i - th  molecule ,  Eq. (1.1) can be rewr i t t en  as 

( p T r a e )  - t  - ~  2kc7~ (~mkT) -~ 2Q-12~ j 2.(Agi,,.ot) ~ y3 exp (--  7 z - -  ei) b db dy dDi. 
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Thus,  the assumpt ion  made al lows us to reduce  the dynamic col l is ion p r o b -  
l e m  of two mo lecu l e s  to the col l is ion p r o b l e m  of a molecule  with a s t ruc tu re l e s s  
pa r t i c l e .  At the s a m e  t ime  Agi , ro  t is  a function of b, T, ~2i. It should be pointed 
out, however ,  that  this t rans i t ion  should not be cons idered  as  fo rmal ly  replac ing  
one of the mo lecu l e s  by a s t r u c t u r e l e s s  par t i c le .  

2. To de t e rmine  the dependence of A~i , rot  on b, 7, ~2i i t  i s  n e c e s s a r y  to 
solve the dynamic collision p rob l em of a molecule ,  whose a toms a r e  denoted by 
indices  1 and 2, with a s t r u c t u r e l e s s  pa r t i c l e  (index 3). We a s s u m e  that  the i n t e r -  
act ion potent ia l  of the colliding pa r t i c l e s  is  given in the fo rm 

U =  U ~  ([r~-r~l)-Um([r~-r~l)§ 

where  r a ( a  = 1, 2, 3) i s  the r a d i u s - v e c t o r  of pa r t i c l e  a in a fixed Car t e s i an  coordinate  sys t em.  The sys t em 
of pa r t i c l e s  cons idered  has 9 coordinates  and 9 momenta .  Consequently,  to solve the dynamic p rob l em it  
i s  n e c e s s a r y  to in tegra te  18 Hamil ton equations,  

d r d d t  = p~m~ ~, dp~/d t  : - -  OU/Or~, a = t, 2,3. (2.1) 

The n u m b e r  of these  equations can be reduced f rom 18 to 12 by using in t eg ra l s  of motion of the cen-  
t e r  of m a s s  of the s y s t e m  (it i s  a s s u m e d  that  no external  fo rces  ac t  on the sys tem) .  F o r  this it  is n e c e s -  
s a r y  to in t roduce new v a r i a b l e s  

R v _~ = . . ~ m c ~ r ~ M  , r = ra - - (mlr  1 + m2r2)m-i , r~ = r l - - r~ ;  
cs 

P : ~ P~, P --= Imp3 - -  m3 ( P l  - -  Pc)] M - l ,  P~ = (m2Px - -  ralPh) m -~', 

m : m l  + m2, M = m + m 3. 

Here  (R, P) a r e  the phase  coordinates  of the cen te r  of m a s s  of the s y s t e m  of colliding pa r t i c l e s ,  (r,  p) a r e  
the phase  coordinates  of the re la t ive  motion of molecule  12 and pa r t i c l e  3, and (ri,  Pi) a r e  the phase  co-  
ordinates  of in ternal  motion in the molecule .  In the new va r i ab l e s  the equations of mot ion (2.1) a r e  r e -  
wr i t ten  in the f o r m  

dR~dr = PM-~, d P / d t  = 0, (2.2) 

dr~dr = p,a - i ,  d p / d t  : --c3U/Or,  (2.3) 

d r j d t  = p i ~ - l l  d p j d t  = - -  OU/Or~, 

~t -~ m m z M - t ,  rxi = mlm.2m - l .  

Equations (2.2) desc r ibe  t rans la t iona l  mot ion of the cen te r  of m a s s  of the s y s t e m  as a whole, and 
thus,  t h e y a r e  of no in te res t .  Equations (2.3) desc r ibe  the re la t ive  motion of pa r t i c l e  3 and molecule  12 
and the in te rna l  mot ion in molecule  12. They can be cons idered  as equations of mot ion of two pa r t i c l e s  
with masse s /~  and/z i in a field with in te rac t ion  potential  

U(r, r i )=U12(r12)~U13(r la )~U.z ( r23) ,  

r 1 2 = r i  , r l 3 ~ - - - r - - m 2 m - i  r i ~  r ~ . 3 = r - ~ m l m - i r  i .  

I f  the in te rac t ion  potent ial  U(r, r i) i s  known and the init ial  va lues  of coordinates  and momen ta  of 
pa r t i c l e s  ~ and ~i a r e  given, numer ica l  in tegra t ion of Eqs. (2.3) so lves  the dynamic collision p rob lem.  
At the s a m e  t ime  the dependence of A~i , ro t on b, 3/, ~i i s  s 

The n u m b e r  of equations can be sti l l  reduced,  using the fac t  that  the total  ene rgy  and angular  m o -  
men tum of the s y s t e m  a r e  conserved .  I t  i s ,  however ,  m o r e  convenient  not to reduce  the o r d e r  of the s y s -  
t em but to use  these  in tegra l s  for  au tomat ic  modif icat ion of the s tep of integrat ion.  

3. We r ewr i t e  (1.3) in a f o r m  convenient  fo r  calculat ions.  The phase  volume e lement  of in ternal  
deg rees  of f r e e d o m  i s r e p r e s e n t e d  in the f o r m  

2 �9 d-Qi ---- r~pi sm Or sin O p d O r d O p d ~ d ~ d r i d p l ,  

where  angles  with index r r e f e r  to r i and those  with p, to Pi- Then 

~o c~ P m a x  r m a x  2~  2a~ :n ,~ 

(prro , ) - '  = 4 a k c ~  (rcmkT)- t '2Q - i  ( ; ; Y ! ! t ! ?K (3.1) 
0 0 0 r m i  n 
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>: (he~,~ot)~e exp ( - -e - -e i )brTp i  sinO~ sinOvd OflO~d%d%,dridpidbde,  

ei = [p~/2ttl q- U n (, 'O]/kT, Pmax = (21xiD/12, 

ei.,.ot = e . , -  p~,~:ib,,'21xikT , P~,~ib = (plr~)/r~, e = ,]2. 

Here  D is  the d issocia t ion  energy  of the molecu le ,  and r m i  n and r m a  x a r e  the solutions of the equation 
p~/2#i  + Ulz(r) = D for  given Pi" 

The calculat ion of the e igh t -d imens iona l  in tegra l  in the r ight -hand side of (3.1) by conventional m e t h -  
ods is  p rac t i ca l ly  inconvenient,  s ince the number  of points in which the in tegrand has  to be evaluated in-  
c r e a s e s  sharp ly  with the in tegra l  dimension.  The Monte Car lo  method significantly r educes  the number  of 
in tegrand e s t i m a t e s  required.  P rac t i ca l ly ,  the e r r o r  of the Monte Car lo  scheme  does not depend explici t ly 
on the d imensional i ty  of the in tegra l  and d e c r e a s e s  as  N -1/2, where  N i s  the number  of in tegrand eva lua-  
t ions.  I r i s ,  t he re fo re ,  of p rac t ica l  i n t e r e s t  to apply the Monte Car lo  method to the calculat ion of the in-  
t eg ra l  (3.1), as  desc r ibed  in what follows. 

It  i s  requi red  to evaluate  the in tegra l  1 = S .." S ]  @1 ..... x~,) dxx i.. dx,~ over  the volume V lying inside the 
V 

n-d imens iona l  cube 0-< x 1, . . . ,  x n -< 1. We continue f(xl, . . . ,  x n) to the whole cube, putting i t  equal to ze ro  
outside V. Consider  the se t  of independent random points Pk(~lk, �9 . ' ,  ~nk), whose coordinates  a re  inde-  
pendent random quanti t ies,  equally d is t r ibuted  on the segment  (0, 1). F o r  la rge  N the following re la t ion  
then holds with high probabil i ty:  

N 

I . ~ .  I,'r = N - i  ~ f (Pa). 

The inequali ty I I - I / I N I  < e is  sa t i s f ied  with probabi l i ty  q, and the quantity e is  e s t ima ted  by the equation [3] 

e ~-~ [1 + 4 (2]N)i/2li;ZcrrI~tN -l,'z, (3.2) 
N 

h = l  

The quantity ~ appear ing  in (3.2) i s  de te rmined  f rom the given probabi l i ty  q by the equation e r f (T /  
21/2) =q [err(x) is the e r r o r  function]. 

4. The scheme  d i scussed  abqve was used  to evaluate  the rotat ional  re laxat ion t ime  of mo lecu l a r  
ni trogen.  The i n t r a m o l e c u l a r  potential  was given by the anharmonic  Morse  osc i l l a to r  

U,2 =~ D {l - -  exp [-- ~ (r - -  r0)]} ~, 

where  r 0 is the equi l ibr ium dis tance between a toms  in the molecule ,  and B is  a p a r a m e t e r  de te rmined  by 
o t 

well-known spec t roscop ic  constants  (for N2: D = 9.75 eV, 3 = 2.72 A - ,  r 0 = 1.094 ~). F o r  the i n t e rmolecu -  
l a r  potent ial  we took the potent ial  

U~3-5 U23=A[exp(--~q~) " exp~--~r2z)], (4.1) 

where the parameters A and ~ were determined by averaging over all molecular orientations the interac- 
tion potential U=Ae -kr, taken from elastic scattering experiments of molecular beams [i], using the sim- 
plified procedure considered in [4]. As a result we have for N2: A = 725 eV, k=3.27/~-I. 

The equations of motion (2.3) were solved numerically on a B]~Si~I-6 computer by means of the 

Runge-Kuttu method. Inclusion of every trajectory started at a distance x0=5r 0 (Fig. i). For given ini- 
tial collision parameters a standard subroutine of pseudorandom numbers, equally distributed over the 

interval (0, i), was used. 

Calculation of the rotational relaxation time was performed at temperatures of 300, i000, and 1500~ 
The results of the calculation, expressed in terms of the number of collisions needed to establish rotational 

equilibrium, are 

Zrot = 4x--lpTro31 -~, 

where ~ is the gas viscosity, represented in Fig. 2 (the continuous line). The circles are results of ultra- 

sonic measurements of Zro% [5]. 

On the whole, we point out the quite satisfactory agreement of the given calculation, using experi- 
mental values for the intermolecular interaction potential parameters, with direct measurements of Zro t. 
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Deviat ions between exper imen ta l  and calculated values a t  
T ~ 1000~ can be explained as follows. 

The re laxat ion t ime  calculated by (1.1) c h a r a c t e r -  
i zes  the rotat ional  re laxat ion  t ime  only fo r  smal l  deviat ions 
f rom r o t a t i o n a l - t r a n s l a t i o n a l  equi l ibr ium.  In u l t rason ic  
expe r imen t s  the deviation f r o m  equi l ibr ium, pa r t i cu l a r l y  
a t  low t e m p e r a t u r e s  (around 300~ can be significant.  
The re fo re ,  quanti tat ive compar i son  of ca lcula ted  and ex-  
pe r imen ta l  va lues  of Z ro  t i s ,  in our  case ,  not fully c o r r ec t .  
Neve r the l e s s ,  the qual i ta t ive pa t te rn  of the calculat ion of 
Zro  t (T) (Zro  t i nc reas ing  with T) coincides with exper iment ,  
which jus t i f ies  the confidence in using the potential  model  
(4.1) in evaluat ing the rotat ional  re laxa t ion  t ime.  

In th is  connection it  i s  in te res t ing  to compa re  the given calculat ion with the theory  of rotat ional  r e -  
laxation [6], in which the t e m p e r a t u r e  dependence of Z ro  t i s  man i fes t ed  only by the p r e s e n c e  of a potent ial  
well  in the i n t e r m o l e c u l a r  in te rac t ion  potential .  F o r  compar i son ,  we analyze the theore t ica l  and calculated 
function Zro  t (;0. P a r k e r ' s  exp re s s ion  fo r  Zro  t in the given case  is 

Z,,r ~- 2-~6~I0 (5)/I~ (6), 5 --- 0.5Lr0, (4.2) 

where  In(6) is the modified,  n- th  o r d e r  B es se l  function. F igure  3 shows the resu l t  of va ry ing  the p a r a m -  
e t e r  k in the exp re s s ion  for  Z r o  t. A calculat ion by Eq. (4.2) is  shown by the dashed line, and the full curve  
gives the compute r  calculat ion a t  T=300~ A= 700 eV. Analysis  of Fig. 3 shows that  the functions Zrot (k)  
a r e  to ta l ly  different .  The reason  fo r  this deviat ion should be sought in P a r k e r ' s  basic assumpt ions :  at 
l a rge  k the assumpt ion  of a sma l l  deviation of the in te rac t ion  potential  f rom spher ica l  s y m m e t r y  breaks  
down, and f o r  sma l l  • the assumpt ion  of sma l lnes s  of Aero  t fa i ls .  

The usefu lness  of P a r k e r ' s  theory  is  in predic t ing  the i nc r ea se  of Zro  t with T. This  fact,  however,  
is  a d i r ec t  consequence of the p r e s e n c e  of potential  wells in the i n t e r m o l e c u l a r  potential .  A calculat ion 
for  the potent ial  (4.1) gives Zro  t (T) = const (4.2), which does not co r respond  to the r e su l t s  obtained in the 
p r e s e n t  paper .  P a r k e r ' s  theory  a lso  does not p red ic t  the dependence of Zro  t on A. The data of our paper ,  

o i 
evaluated for  T=300~ and k=3 .27  A- , show that Z r o t =  8.2 a t  A=725 eV and Z r o t =  13.7 at  A=214 eV. 

We d i scuss  the p rob lem of a c c u r a c y  of the calculation. The a c c u r a c y  is  control led by Eq. (3.2). To -  
ge the r  with the coll is ion in tegra l  we evaluated the quantity a 2, needed to e s t ima te  the re la t ive  e r r o r  ~. I t  
turns  out that  the in tegrand has  to be evaluated 3000-5000 t imes  in o rde r  that  the e r r o r  be l ess  than 10% 
with a p robabi l i ty  0.87. The probabi l i ty  that  the e r r o r  is  l e ss  than 20% for  N=500(1000) is  0.66(0.82). 

F igu re  4 shows the typical  dependence of P~'rot on N (in the case  given T = 1000~ Analysis  of Fig. 
4 shows that a f t e r  N=250 the points l ie main ly  between 3.0 and 3.8. There fo re ,  as a final r e su l t  we chose 
not  the unknown value of the quantity cons idered  a t  N = 1000, but i t s  ave r age  value in the in te rva l  N=2 5 0 -  
1000, equal to 3.4. I t  can be expected  that  this p rocedu re  gives a m o r e  accura t e  resu l t ,  but the accu racy  
e s t i m a t e s  above a r e  m os t l y  appl icable  to points  on the boundary of the sp r ead  region.  

�9 Since a calculat ion of 1000 t r a j e c t o r i e s  on the B~.SM-6 compute r  r equ i re s  nea r ly  3 hours ,  m o s t  r e -  
sults w e r e  obtained by ave rag ing  the data a f t e r  500 t r a j e c t o r i e s .  
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